發(fā)布時間:2019-10-09
時間:2019年10月11日(周五)中午12點30分
地點:北洋園校區(qū)50樓A333教工活動中心(咖啡廳)
報告題目:知識圖譜——人工智能的基石
主講人:王鑫
【個人簡介】
王鑫,天津大學(xué)智能與計算學(xué)部副教授、人工智能學(xué)院副院長。2009年和2004年于南開大學(xué)計算機科學(xué)與技術(shù)系分別獲工學(xué)博士和學(xué)士學(xué)位,澳大利亞西澳大學(xué)、格里菲斯大學(xué)訪問學(xué)者。中國計算機學(xué)會高級會員、信息系統(tǒng)專業(yè)委員會秘書長、計算機術(shù)語審定工作委員會執(zhí)行委員、數(shù)據(jù)庫專業(yè)委員會委員、大數(shù)據(jù)專家委員會通訊委員;中國中文信息學(xué)會語言與知識計算專業(yè)委員會委員;中國人工智能學(xué)會教育工作委員會委員;ACM 會員、IEEE會員。主要研究方向為知識圖譜數(shù)據(jù)管理與學(xué)習(xí)、大規(guī)模圖數(shù)據(jù)庫、大數(shù)據(jù)分布式處理。主持國家自然科學(xué)基金項目、天津市自然科學(xué)基金項目、“百度主題研究”項目、“CCF-華為數(shù)據(jù)庫創(chuàng)新研究計劃”等項目。在IEEE TPDS, Complexity, WWW, ICDE, CIKM, ISWC, ER等國內(nèi)外學(xué)術(shù)期刊和會議上發(fā)表論文70多篇。國際會議APWeb-WAIM2020程序委員會主席,JIST2019程序委員會主席、DASFAA2018宣傳主席以及WWW2019, KDD2019, ISWC2019, DASFAA2017~2019, WISE2018~2019等國際會議程序委員會委員。獲得國際會議APWeb-WAIM2018最佳論文提名獎和最佳演示論文獎。SCI期刊Big Data Research編委、中文核心期刊《計算機工程與應(yīng)用》、《計算機系統(tǒng)應(yīng)用》編委,IEEE TKDE、KBS、WWWJ等國際期刊審稿人。
【報告內(nèi)容簡介】
知識圖譜是人工智能的重要基石,其包括知識獲取、知識組織、知識存儲、知識查詢與檢索、知識推理與應(yīng)用等方面,是人工智能符號主義學(xué)派的新發(fā)展,是解決人工智能可解釋性難題的關(guān)鍵工具。本報告在給出人工智能歷史背景之后,追溯知識圖譜的發(fā)展脈絡(luò),包括知識表示方法和知識工程的發(fā)展,主要介紹目前以語義萬維網(wǎng)和關(guān)聯(lián)數(shù)據(jù)為代表的主流知識圖譜理論、技術(shù)、標(biāo)準(zhǔn)與應(yīng)用,展望知識圖譜如何促進新一代人工智能的發(fā)展。
【相關(guān)學(xué)科】人工智能、計算機、軟件工程、圖書情報
【主辦單位】校工會、圖書館、科研院、校青年教師聯(lián)誼會
Lecture: Knowledge Graphs—the Cornerstone of AI
When: 12:30 p.m., Friday, October, 11th, 2019
Where: A333, 50th Building, School of Chemical Engineering and Technology, Beiyang campus
Lecturer:
Xin Wang is an Associate Professor at College of Intelligence and Computing and the vice-dean of School of Artificial Intelligence, Tianjin University. He obtained his Ph.D. and Bachelor degrees in Computer Science from Nankai University in 2009 and 2004, respectively, and worked as a visiting scholar at the University of Western Australia and Griffith University. He is a senior member of China Computer Federation (CCF), and the secretary-general of CCF Technical Committee on Information Systems, a member of CCF Technical Committee on Databases. His research interests include knowledge graph data management and learning, large-scale graph databases, and big data processing. He has been the main investigator of two research projects funded by the National Natural Science Foundation of China (NSFC). He has published more than 70 research papers in various international conferences and journals, including ICDE, WWW, CIKM, ISWC, ER, IEEE TPDS, and Complexity. He served as a PC co-chair of APWeb-WAIM’20, PC co-chair of JIST’19, a publicity co-chair of DASFAA’18, and PC members of WWW’19, KDD’19, ISWC’19, DASFAA’17-’19, WISE’18-’19, etc. He won the best paper runner-up award and the best demo paper award in APWeb-WAIM2018. He is an editor of the SCI journal Big Data Research, reviewer of international journals including IEEE TKDE, KBS, WWWJ, etc.
About the Lecture:
Knowledge Graph is the cornerstone of Artificial Intelligence, which includes knowledge acquisition, knowledge organization, knowledge storage, knowledge query and retrieval, knowledge reasoning and application, etc, which is the new development of Symbolic Artificial Intelligence, which is a key tool to solve the interpretability problem of AI. This talk will first give the historical background of Artificial Intelligence, then track back the development of knowledge graphs, which includes the approaches of knowledge representations and development of knowledge engineering, then mainly introduce the current mainstream theories, methods, standards, and applications of knowledge graphs, which is represented by the Semantic Web and Linked Data, and finally look forward to how knowledge graphs promote the development of the next generation of AI.
Relevant Discipline: Artificial Intelligence, Computer Science, Software Engineering, Library and Information
Organizers: Trade Unions, Library, Office of Science and Technology, Young Teachers Association
All students and staff of Tianjin University are welcome.